Spécialisation du pseudo-groupe de Malgrange et irréductibilité (Specialisation of the Malgrange pseudogroup and irreductibility) Davy, Damien - (2016-12-13) / Universite de Rennes 1 - Spécialisation du pseudo-groupe de Malgrange et irréductibilité
| |||
Langue : Français Directeur(s) de thèse: Cerveau, Dominique; Casale, Guy Discipline : Mathématiques et applications Laboratoire : IRMAR Ecole Doctorale : MATISSE Classification : Mathématiques Mots-clés : équation différentielle, géométrie analytique, théorie de Galois différentielle, pseudo-groupe de Malgrange
| |||
Résumé : Le pseudo-groupe de Malgrange d'un champ de vecteurs défini sur une variété est la sous-pro-variété de l'espace des jets de biholomorphismes locaux de cette variété obtenue en prenant la clôture de Zariski des flots du champ de vecteurs. Une équation différentielle ordinaire d'ordre 2 définit un champ de vecteurs sur une variété de dimension 3. Le pseudogroupe de Malgrange de ce dernier est de type différentiel d'ordre inférieur ou égal à 2. Une équation différentielle ordinaire d'ordre 2 est dite irréductible si ses solutions générales ne peuvent pas être exprimées à l'aide de solutions d'équations algébriques, différentielles linéaires ou différentielles d'ordre 1. Si le type différentiel du pseudo-groupe de Malgrange d'une équation d'ordre 2 est exactement 2 alors cette dernière est irréductible. Nous donnons plusieurs définitions du pseudo-groupe de Malgrange d'un champ de vecteurs équivalentes à la définition originale donnée par Bernard Malgrange. La définition du premier paragraphe nous permet d'appliquer un théorème de semi-continuité de la dimension des clôtures de Zariski des feuilles d'un feuilletage holomorphe de Philippe Bonnet. Nous obtenons le résultat suivant concernant les équations différentielles ordinaires dépendant de paramètres. Si le type différentiel du pseudo-groupe de Malgrange de l'équation spécialisée en une valeur des paramètres est à exactement 2 alors il en sera de même pour les pseudo-groupes de Malgrange de l'équation spécialisée en des valeurs générales des paramètres. Une première application de ce résultat est de redémontrer l'irréductibilité des équations de Painlevé pour des valeurs générales des paramètres. Une seconde application est de déterminer complètement les pseudo-groupes de Malgrange de ces équations pour des valeurs générales des paramètres. Les définitions du pseudo-groupe de Malgrange et les résultats de spécialisations s'adaptent aux équations aux q-différences. En appliquant ces résultats aux équations de Painlevé discrètes, nous obtenons le pseudo-groupe de Malgrange de ces dernières pour des valeurs générales des paramètres. Abstract : The Malgrange pseudogroup of a vector field on a variety is the sub-pro-variety of the jet space of local biholomorphisms of this variety obtained by taking the Zariski closure of the flow of the vector field. A second-order ordinary differential equation defines a vector field on a variety of dimension 3. The differential type of the Malgrange pseudogroup of this one is at most 2. A second-order ordinary differential equation is said to be irreductible if its general solutions can not be expressed using solutions of algebraic equations, linear differential equations or differential equations of order 1. If the differential type of the Malgrange pseudogroup of a second-order differential equation is exactly 2 then the latter is irreductible. We give several definitions of the Malgrange pseudogroup of a vector field which are equivalent to the original definition given by Bernard Malgrange. The definition of the first paragraph leads us to apply a semi-continuity theorem of the dimension of the Zariski closure of the leaves of a holomorphic foliation given by Philippe Bonnet. We obtain the following result about the ordinary differential equations which depend on parameters. If the differential type of the Malgrange pseudogroup of the equation specialized in one value of parameters is exactly two then it will be the same for the Malgrange pseudogroup of the equation specialized in a general value of parameters. A first application of this result is an other proof of the irreductibility of the Painlevé equations for general value of parameters. A second application is to fully determined the Malgrange pseudogroups of this equations for general value of parameters. The definitions of the Malgrange pseudogroup of a vector field and the specialisation results can be adapted the q-difference equations. By applying this results to the discret Painlevé equations, we fully determined the Malgrange pseudogroup of the latters for general value of parameters. |