Étude de l'influence de la vitesse de déformation sur la réponse à l'indentation des matériaux polymères (Study of the strain rate effect of polymeric material using indentation test) Rabemananjara, Liva - (2015-11-26) / Université de Rennes 1 - Étude de l'influence de la vitesse de déformation sur la réponse à l'indentation des matériaux polymères
| |||
Langue : Français Directeur(s) de thèse: Mauvoisin, Gérard; Gavrus, Adinel Discipline : Mécanique Laboratoire : Laboratoire de génie civil et génie mécanique Ecole Doctorale : Sciences de la matière Classification : Physique Mots-clés : Caractérisation mécanique, comportement thermomécanique des polymères, Indentation instrumentée, déformation représentative, vitesse de déformation représentative
| |||
Résumé : L'objectif de cette thèse est d'étudier l'influence de la vitesse de déformation sur la réponse par indentation des matériaux. Les matériaux polymères thermoplastiques, notamment le Polycarbonate (PC), le Polyméthylméthacrylate (PMMA), le Polyéthylène à Haute Densité (PEHD) et le Polyamide Nylon 6.6 renforcé à 30% de fibres de verres (PA 6.6-30% GFR), ont été choisis comme matériaux d'études en raison de leur forte sensibilité à la vitesse de déformation même à température ambiante. Les deux premières parties de ce travail sont focalisées sur l'étude du comportement thermomécanique des matériaux polymères. Une étude bibliographique sur des matériaux polymères thermoplastiques, amorphes et semi-cristallins, a été effectuée afin de comprendre leur microstructure et leur mécanisme de déformation. De plus, des essais de compression simple ont été réalisés sur les matériaux d'étude à différentes vitesses de traverse constantes puis dépouillés analytiquement. Les trois derniers chapitres de cette thèse sont consacrés à la caractérisation mécanique des matériaux par indentation. En premier lieu des simulations numériques de l'essai d'indentation conique ( =70,3°) à une vitesse de pénétration constante ( = 1 µm/s) ont été effectuées à partir des paramètres de la loi de G'sell modifiée et de la loi puissance identifiés par compression. L'identification par analyse inverse des paramètres de la loi de G'sell modifiée à 7 paramètres sur des courbes pseudo-expérimentales nous a permis de confirmer la non unicité de la solution. Ainsi, nous avons effectué l'étude théorique de l'indentation sur des matériaux pseudo-expérimentaux en utilisant la loi puissance. Un nouveau concept de déformation représentative et de vitesse de déformation représentative, basé sur l'analyse du domaine de solution regroupant l'ensemble des paramètres donnant les mêmes courbes d'indentation, a été proposé. La procédure d'identification des paramètres de la loi puissance par indentation utilisant ce concept de déformation représentative et de vitesse de déformation représentative, appliquée sur un matériau pseudo-expérimental donne des résultats très satisfaisants. Sur les matériaux d'étude en revanche la méthode n'a pu révéler son potentiel puisque la loi de comportement de ces matériaux n'est pas correctement modélisée par une loi puissance sur une large plage de déformation et de vitesse de déformation. Enfin, le concept de déformation représentative et de vitesse de déformation représentative proposé dans ce travail apporte de nouveaux outils d'analyse et d'exploitation des données de l'indentation et offre des perspectives très intéressantes. Abstract : The aim of this thesis is to study the strain rate effects through materials response from indentation test. Polymeric solid material, especially Polycarbonate (PC), Polymethyl methacrylate (PMMA), High Density Polyethylene (HDPE) and Polyamide Nylon 6.6 -30% glass fiber reinforced (PA 6.6-30% GFR), were selected as study materials due to their high strain rate sensitivity even at room temperature. The first two parts of this work were focused on the study of the thermomechanical behavior of polymer materials. Bibliographical studies of thermoplastic polymer materials, amorphous and semi-crystalline, was established in order to understand their microstructure and deformation mechanism. Moreover, compression tests were performed on study materials with several crosshead speeds values then the results was exploited analytically. The last three parts were focused on mechanical characterization using Instrumented Indentation Test (IIT). Firstly, numerical simulation of a conical indentation test ( =70.3°) with a constant rate displacement ( = 1 µm/s) was established using the identified G’sell behavior parameters and the power-law parameters from compression test. Parameter identification using Inverse Analysis from numerical material shows the non-uniqueness of G’sell parameters which gives the same indentation curve. Thus, theoretical study of conical indentation test was established considering power-law model. A new concept of the representative strain and the representative strain rate, based on solution domain which associate the set of parameters leading to the same indentation curves, was proposed. Very satisfactory results was obtained when identification process using this average representative strain rate is applied to a numerical material define by a power-law model. However, this method could not show its efficiency because the mechanical behavior of the real material is not correctly modeling with a power-law at a wide range of strain and strain rate. Finally, the new concept of the representative strain and the representative strain rate proposed on this work contributes to a new investigation tools to exploit the results form IIT and provide a very interesting perspectives. |