Mise en œuvre d'un capteur chimique et biologique à base de nanofils de silicium (Implementation of a (bio)-chemical sensor based on silicon nanowires) Wenga, Gertrude - (2013-12-09) / Université de Rennes 1 - Mise en œuvre d'un capteur chimique et biologique à base de nanofils de silicium
| |||
Langue : Français Directeur(s) de thèse: Pichon, Laurent ; Salaün, Anne-Claire Discipline : Electronique Laboratoire : IETR Ecole Doctorale : Mathématiques, informatique, signal, électronique et télécommunications Classification : Sciences de l'ingénieur, Chimie, minéralogie, cristallographie Mots-clés : nanofils de silicium, fonctionnalisation de surface, capteur chimique, biocapteur.
| |||
Résumé : L'objectif de ce travail de recherche est la réalisation de dispositifs à base de nanofils de silicium, réalisés par la méthode des espaceurs. La synthèse des nanofils est effectuée à partir d'une couche de silicium polycristallin, déposée par la technique LPCVD (Low Pressure Chemical Vapor Deposition). Ces nanofils sont ensuite intégrés dans les dispositifs électroniques tels que des résistances ou des transistors réalisés suivant deux configurations différentes « bottom-gate » et « step-gate ». Les caractéristiques électriques de ces deux types de transistors ont mis en évidence des propriétés électriques suffisantes pour leur utilisation en tant que capteurs. Une simulation permet d'expliquer l'effet de l'apport de charges électriques à la surface des nanofils sur la concentration d'électrons dans la couche active. Les dispositifs sont tout d'abord utilisés pour la mesure du pH, et montrent une sensibilité de détection supérieure à la sensibilité nernstienne. Pour une utilisation du dispositif en tant que biocapteur, une fonctionnalisation de la surface des nanofils est nécessaire pour permettre l'accrochage de sondes d'ADN. La détection électronique de l'hybridation sondes/cibles de brins d'ADN complémentaires est démontrée avec un faible seuil de détection. Enfin, afin d'augmenter la surface d'échange entre le nanofil et les espèces chargées, un procédé de fabrication de résistances à base de nanofils suspendus est développé. Des tests de détection en présence d'ammoniac ont mis en évidence une réponse linéaire sur une gamme de concentrations. Les résistances à base de nanofils suspendus présentent une plus grande sensibilité que celles à base de nanofils non suspendus, mettant en avant l'effet important de la surface des nanofils. Tous ces résultats permettent de démontrer la faisabilité de capteurs chimiques et biologiques à base de nanofils de silicium à partir des techniques conventionnelles de la microélectronique en utilisant un procédé de fabrication « bas-coût ». Abstract : The goal of this research work is the realization of devices based on silicon nanowires, realized using sidewall spacer formation technique. Nanowires are synthesized form a polycrystalline silicon layer deposited by LPCVD technique (Low Pressure Chemical Vapor Deposition). These nanowires are then integrated into electronic devices such as resistors and transistors made using two different configurations “bottom-gate” and “step-gate”. The electrical characteristics of these two types of transistors have shown adequate electrical properties for their use as sensors. A simulation is made, to explain how additional electrical charges on the surface of the nanowires, affect the electron concentration inside the active layer. The devices are firstly used for the pH measurement, and have shown sensitivity higher than the Nernstian sensitivity detection. For a use as biosensor, nanowires are functionnalized to allow the binding of DNA probes. Electronic detection of hybridization complementary probe/target DNA strands is demonstrated with a low detection limit. Finally, in order to increase the exchange surface between the nanowires and charged species, resistors based on suspended nanowires were developed. Different tests were performed in the presence of ammonia and showed a linear response over a range of concentrations. Resistors based on suspended nanowires highlighted greater sensitivity than those based on unsuspended nanowires, bringing out the important effect of the surface of the nanowires. All these results demonstrate the feasibility of chemical and biological sensors based on silicon nanowires compatible with conventional microelectronics techniques using a low-cost process. |