Algorithmes d'algèbre linéaire pour la cryptographie (Linear algebra algorithms for cryptography) Delaplace, Claire - (2018-11-21) / Universite de Rennes 1 - Algorithmes d'algèbre linéaire pour la cryptographie
| |||
Langue : Anglais Directeur(s) de thèse: Fouque, Pierre-Alain; Bouillaguet, Charles Discipline : Informatique Laboratoire : IRISA Ecole Doctorale : MATHSTIC Classification : Informatique Mots-clés : Algorithmes, Cryptographie, Algèbre linéaire
| |||
Résumé : Dans cette thèse, nous discutons d’aspects algorithmiques de trois différents problèmes, en lien avec la cryptographie. La première partie est consacrée à l’algèbre linéaire creuse. Nous y présentons un nouvel algorithme de pivot de Gauss pour matrices creuses à coefficients exacts, ainsi qu’une nouvelle heuristique de sélection de pivots, qui rend l’entière procédure particulièrement efficace dans certains cas. La deuxième partie porte sur une variante du problème des anniversaires, avec trois listes. Ce problème, que nous appelons problème 3XOR, consiste intuitivement à trouver trois chaînes de caractères uniformément aléatoires de longueur fixée, telles que leur XOR soit la chaîne nulle. Nous discutons des considérations pratiques qui émanent de ce problème et proposons un nouvel algorithme plus rapide à la fois en théorie et en pratique que les précédents. La troisième partie est en lien avec le problème learning with errors (LWE). Ce problème est connu pour être l’un des principaux problèmes difficiles sur lesquels repose la cryptographie à base de réseaux euclidiens. Nous introduisons d’abord un générateur pseudo-aléatoire, basé sur la variante dé-randomisée learning with rounding de LWE, dont le temps d’évaluation est comparable avec celui d’AES. Dans un second temps, nous présentons une variante de LWE sur l’anneau des entiers. Nous montrerons que dans ce cas le problème est facile à résoudre et nous proposons une application intéressante en re-visitant une attaque par canaux auxiliaires contre le schéma de signature BLISS. Abstract : In this thesis, we discuss algorithmic aspects of three different problems, related to cryptography. The first part is devoted to sparse linear algebra. We present a new Gaussian elimination algorithm for sparse matrices whose coefficients are exact, along with a new pivots selection heuristic, which make the whole procedure particularly efficient in some cases. The second part treats with a variant of the Birthday Problem with three lists. This problem, which we call 3XOR problem, intuitively consists in finding three uniformly random bit-strings of fixed length, such that their XOR is the zero string. We discuss practical considerations arising from this problem, and propose a new algorithm which is faster in theory as well as in practice than previous ones. The third part is related to the learning with errors (LWE) problem. This problem is known for being one of the main hard problems on which lattice-based cryptography relies. We first introduce a pseudorandom generator, based on the de-randomised learning with rounding variant of LWE, whose running time is competitive with AES. Second, we present a variant of LWE over the ring of integers. We show that in this case the problem is easier to solve, and we propose an interesting application, revisiting a side-channel attack against the BLISS signature scheme. |