Caractérisation des hot spots de réactivité biogéochimique dans les eaux souterraines (Characterization of biogeochemical reactivity hot spots in groundwater) Bochet, Olivier - (2017-12-08) / Universite de Rennes 1 - Caractérisation des hot spots de réactivité biogéochimique dans les eaux souterraines
| |||
Langue : Français, Anglais Directeur(s) de thèse: Aquilina, Luc; Le Borgne, Tanguy Discipline : Sciences de la terre Laboratoire : Géosciences Rennes Ecole Doctorale : EGAAL Classification : Sciences de la terre Mots-clés : Hot spots, biogéochimie, activité microbienne, biofilm, aquifère fracturé, tapis microbien, Fluorescéine diacétate, push-pull, traçages, bactéries ferro-oxydantes
| |||
Résumé : Les processus microbiens ont une importance déterminante dans la dynamique des processus réactifs dans les eaux souterraines. La compréhension de la variabilité spatiale et temporelle de ces phénomènes, et le développement de méthodes expérimentales de terrain, ouvrent de nouveaux champs de recherches et d'applications allant de la remédiation des aquifères contaminés à la compréhension des grands cycles biogéochimiques naturels. Dans le premier volet de cette thèse nous présentons des observations de terrain permettant de comprendre le rôle des fractures sur la formation d'un ''hotspot'' d'activité microbienne en profondeur. Du fait de leur forte réactivité, ces ''hotspots'' peuvent dominer la dynamique biogéochimique des milieux souterrains, malgré leur faible extension spatiale. Nous avons ainsi analyser les conditions de formation d'un tapis microbien par des bactéries ferro-oxydantes à 60 mètres de profondeur sur l'observatoire de Ploemeur (réseau H+) alors que ces phénomènes ont été observé jusqu'à présent en surface. Les résultats de cette étude montrent que des circulations hétérogènes, liées à la structure des milieux fracturés, créent des zones mélanges entre des eaux riches en fer et des eaux oxygénées, à l'origine de ce hotspot microbien. Le deuxième volet de ce travail de thèse a été consacré au développement d'une méthode innovante pour la mesure en continu de l'activité microbienne dans les eaux souterraines. La méthode est basée sur l'utilisation de la Fluoréscéine DiAcétate (FDA) dont le produit de réaction peut être mesuré en continu par un fluorimètre de terrain. Après avoir testé et validé les protocoles sur des solutions enzymatiques et des eaux naturelles en laboratoire, nous avons mis en œuvre cette technique sur le terrain au cours d'expériences de traçages réactifs. Un modèle cinétique nous a permis d'approcher les résultats obtenus en laboratoire, et de comparer nos résultats de terrain aux calibrations effectuées in vitro. Cette méthode ouvre ainsi de nouvelles perspectives pour la caractérisation des processus biogéochimiques sur le terrain. Abstract : Microbial processes play a key role in controlling biogeochemical reactivity in groundwater. The understanding of the spatial and temporal variability of these phenomena and the development of novel experimental field methods, has opened new fields of research and applications, ranging from groundwater remediation to understanding of global biochemical cycles. In the first part of this thesis, we present field observations providing new insights on the role of fractures in the formation of a hotspot of microbial activity. Because of their large reactivity, these hotspots can dominate the biogeochemical dynamics of subsurface systems, despite their small spatial extent. We have thus analyzed the conditions for the formation of a microbial mat composed of iron-oxidizing bacteria at 60 meters depth in the Ploemeur fractured rock observatory (H+ network) while these phenomena are usually observed at the surface. These results show that heterogeneous flowpaths, linked to the structure of fractured media, create mixing zones between iron rich water and oxygen rich water, at the origin of the microbial hotspot. The second part of this work was devoted to the development of a novel method for a continuous measurement of microbial activity in groundwater. The method is based on the use of Fluorescein DiAcetate (FDA) whose product of reaction can be measured continuously by a field fluorimeter. After testing and validating protocols in the lab on enzymatic solutions and natural water, we have implemented this technic in the field in reactive tracer test experiments. A kinetic model allowed us to interpret the lab results, and to compare them to the field kinetics. This method thus opens new perspectives for the characterization of biogeochemical processes in the field. |